
Short generators without quantum computers:
the case of multiquadratics

Daniel J. Bernstein & Christine van Vredendaal

University of Illinois at Chicago
Technische Universiteit Eindhoven

19 January 2017

Joint work with Jens Bauch & Henry de Valence & Tanja Lange

Daniel J. Bernstein & Christine van Vredendaal multiquad 1

Part I: Introduction

Daniel J. Bernstein & Christine van Vredendaal multiquad 2

How secure is SVP?

“Lattice-based crypto is secure because lattice problems are hard.”

Really? How hard are they? Which cryptosystems are secure?

Consider, e.g., dimension-N SVP.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?

Daniel J. Bernstein & Christine van Vredendaal multiquad 3

How secure is SVP?

“Lattice-based crypto is secure because lattice problems are hard.”

Really? How hard are they? Which cryptosystems are secure?

Consider, e.g., dimension-N SVP.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.

c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?

Daniel J. Bernstein & Christine van Vredendaal multiquad 3

How secure is SVP?

“Lattice-based crypto is secure because lattice problems are hard.”

Really? How hard are they? Which cryptosystems are secure?

Consider, e.g., dimension-N SVP.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.

c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?

Daniel J. Bernstein & Christine van Vredendaal multiquad 3

How secure is SVP?

“Lattice-based crypto is secure because lattice problems are hard.”

Really? How hard are they? Which cryptosystems are secure?

Consider, e.g., dimension-N SVP.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.

c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?

Daniel J. Bernstein & Christine van Vredendaal multiquad 3

How secure is SVP?

“Lattice-based crypto is secure because lattice problems are hard.”

Really? How hard are they? Which cryptosystems are secure?

Consider, e.g., dimension-N SVP.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.

c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?

Daniel J. Bernstein & Christine van Vredendaal multiquad 3

How secure is SVP?

“Lattice-based crypto is secure because lattice problems are hard.”

Really? How hard are they? Which cryptosystems are secure?

Consider, e.g., dimension-N SVP.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.

c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?

Daniel J. Bernstein & Christine van Vredendaal multiquad 3

How secure is SVP?

“Lattice-based crypto is secure because lattice problems are hard.”

Really? How hard are they? Which cryptosystems are secure?

Consider, e.g., dimension-N SVP.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.

c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?

Daniel J. Bernstein & Christine van Vredendaal multiquad 3

How secure is SVP?

“Lattice-based crypto is secure because lattice problems are hard.”

Really? How hard are they? Which cryptosystems are secure?

Consider, e.g., dimension-N SVP.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?

Daniel J. Bernstein & Christine van Vredendaal multiquad 3

How secure is SVP?

“Lattice-based crypto is secure because lattice problems are hard.”

Really? How hard are they? Which cryptosystems are secure?

Consider, e.g., dimension-N SVP.
Some algorithms taking time 2(c+o(1))N , under plausible assumptions:

c ≈ 0.415: 2008 Nguyen–Vidick.
c ≈ 0.415: 2010 Micciancio–Voulgaris.
c ≈ 0.384: 2011 Wang–Liu–Tian–Bi.
c ≈ 0.378: 2013 Zhang–Pan–Hu.
c ≈ 0.337: 2014 Laarhoven.
c ≈ 0.298: 2015 Laarhoven–de Weger.
c ≈ 0.292: 2015 Becker–Ducas–Gama–Laarhoven.
c ≈ 0.268 quantum algorithm: 2014 Laarhoven–Mosca–van de Pol.

Who thinks this is the end of the story?

Daniel J. Bernstein & Christine van Vredendaal multiquad 3

How secure is approx SVP?

2002 Micciancio–Goldwasser (emphasis added): “To date, the best known
polynomial time (possibly randomized) approximation algorithms for SVP
and CVP achieve worst-case (over the choice of the input) approximation
factors γ(n) that are essentially exponential in the rank n.”

2007 Regev:

2013 Micciancio: “Smooth trade-off between running time and
approximation: γ ≈ 2O(n log logT/ logT)”

Daniel J. Bernstein & Christine van Vredendaal multiquad 4

http://joakimolofsson.deviantart.com/art/Pacific-Rim-372130691

Quantum attacks against cyclotomic lattice problems

STOC 2014 Eisenträger–Hallgren–Kitaev–Song:
poly-time quantum algorithm for K 7→ O×K .

K : number field.
OK : ring of algebraic integers in K .
O×K : group of units in OK .

2015 (and SODA 2016) Biasse–Song,
also using an idea from 2014 Campbell–Groves–Shepherd:
poly-time quantum algorithm for K , gOK 7→ ζ jmg for some j ,
assuming cyclotomic K = Q(ζm), small h+m, very short g .

This recovers secret keys in, e.g.,
2000 Buchmann–Maurer–Möller cryptosystem using cyclotomics,
STOC 2009 Gentry FHE system using cyclotomics,
Eurocrypt 2013 Garg–Gentry–Halevi multilinear-map system, etc.

Daniel J. Bernstein & Christine van Vredendaal multiquad 6

Quantum attacks against cyclotomic lattice problems

STOC 2014 Eisenträger–Hallgren–Kitaev–Song:
poly-time quantum algorithm for K 7→ O×K .

K : number field.
OK : ring of algebraic integers in K .
O×K : group of units in OK .

2015 (and SODA 2016) Biasse–Song,
also using an idea from 2014 Campbell–Groves–Shepherd:
poly-time quantum algorithm for K , gOK 7→ ζ jmg for some j ,
assuming cyclotomic K = Q(ζm), small h+m, very short g .

This recovers secret keys in, e.g.,
2000 Buchmann–Maurer–Möller cryptosystem using cyclotomics,
STOC 2009 Gentry FHE system using cyclotomics,
Eurocrypt 2013 Garg–Gentry–Halevi multilinear-map system, etc.

Daniel J. Bernstein & Christine van Vredendaal multiquad 6

Quantum attacks against cyclotomic lattice problems

STOC 2014 Eisenträger–Hallgren–Kitaev–Song:
poly-time quantum algorithm for K 7→ O×K .

K : number field.
OK : ring of algebraic integers in K .
O×K : group of units in OK .

2015 (and SODA 2016) Biasse–Song,
also using an idea from 2014 Campbell–Groves–Shepherd:
poly-time quantum algorithm for K , gOK 7→ ζ jmg for some j ,
assuming cyclotomic K = Q(ζm), small h+m, very short g .

This recovers secret keys in, e.g.,
2000 Buchmann–Maurer–Möller cryptosystem using cyclotomics,
STOC 2009 Gentry FHE system using cyclotomics,
Eurocrypt 2013 Garg–Gentry–Halevi multilinear-map system, etc.

Daniel J. Bernstein & Christine van Vredendaal multiquad 6

Is the attack idea limited to very short generators?

More lattice problems of interest:
I 7→ shortest nonzero vector in I . (“Exact Ideal-SVP”.)
I 7→ close to shortest nonzero vector in I . (“Approximate Ideal-SVP”.)

Attack is against principal I with a very short generator .

2015 Peikert says technique is “useless” for more general principal ideals.
(“We simply hadn’t realized that the added guarantee of a short generator
would transform the technique from useless to devastatingly effective.”)

Counterargument: attack is poly time against arbitrary principal ideals
for approx factor 2N

1/2+o(1)
in degree-N cyclotomics, assuming small h+.

See, e.g., 2016 Cramer–Ducas–Peikert–Regev.

Daniel J. Bernstein & Christine van Vredendaal multiquad 7

Is the attack idea limited to very short generators?

More lattice problems of interest:
I 7→ shortest nonzero vector in I . (“Exact Ideal-SVP”.)
I 7→ close to shortest nonzero vector in I . (“Approximate Ideal-SVP”.)

Attack is against principal I with a very short generator .

2015 Peikert says technique is “useless” for more general principal ideals.
(“We simply hadn’t realized that the added guarantee of a short generator
would transform the technique from useless to devastatingly effective.”)

Counterargument: attack is poly time against arbitrary principal ideals
for approx factor 2N

1/2+o(1)
in degree-N cyclotomics, assuming small h+.

See, e.g., 2016 Cramer–Ducas–Peikert–Regev.

Daniel J. Bernstein & Christine van Vredendaal multiquad 7

Is the attack idea limited to very short generators?

More lattice problems of interest:
I 7→ shortest nonzero vector in I . (“Exact Ideal-SVP”.)
I 7→ close to shortest nonzero vector in I . (“Approximate Ideal-SVP”.)

Attack is against principal I with a very short generator .

2015 Peikert says technique is “useless” for more general principal ideals.
(“We simply hadn’t realized that the added guarantee of a short generator
would transform the technique from useless to devastatingly effective.”)

Counterargument: attack is poly time against arbitrary principal ideals
for approx factor 2N

1/2+o(1)
in degree-N cyclotomics, assuming small h+.

See, e.g., 2016 Cramer–Ducas–Peikert–Regev.

Daniel J. Bernstein & Christine van Vredendaal multiquad 7

Is the attack idea limited to principal ideals?

2015 Peikert:
“Although cyclotomics have a lot of structure, nobody has yet found a
way to exploit it in attacking Ideal-SVP/BDD . . . For commonly used
rings, principal ideals are an extremely small fraction of all ideals. . . . The
weakness here is not so much due to the structure of cyclotomics, but
rather to the extra structure of principal ideals that have short generators.”

Counterargument, 2016 Cramer–Ducas–Wesolowski:
Ideal-SVP attack for approx factor 2N

1/2+o(1)
in degree-N cyclotomics,

under plausible assumptions about class-group generators etc.
Starts from Biasse–Song, uses more features of cyclotomic fields.

This shreds the standard approx-Ideal-SVP tradeoff picture.

Daniel J. Bernstein & Christine van Vredendaal multiquad 8

Is the attack idea limited to principal ideals?

2015 Peikert:
“Although cyclotomics have a lot of structure, nobody has yet found a
way to exploit it in attacking Ideal-SVP/BDD . . . For commonly used
rings, principal ideals are an extremely small fraction of all ideals. . . . The
weakness here is not so much due to the structure of cyclotomics, but
rather to the extra structure of principal ideals that have short generators.”

Counterargument, 2016 Cramer–Ducas–Wesolowski:
Ideal-SVP attack for approx factor 2N

1/2+o(1)
in degree-N cyclotomics,

under plausible assumptions about class-group generators etc.
Starts from Biasse–Song, uses more features of cyclotomic fields.

This shreds the standard approx-Ideal-SVP tradeoff picture.

Daniel J. Bernstein & Christine van Vredendaal multiquad 8

Non-cyclotomic lattice-based cryptography

Cyclotomics are scary. Let’s explore alternatives:

Eliminate the ideal structure.
e.g., use LWE instead of Ring-LWE.
But this limits the security achievable for key size K .

2016 Bernstein–Chuengsatiansup–Lange–van Vredendaal “NTRU
Prime” (preliminary announcement 2014.02, before these attacks):
as in discrete-log crypto, eliminate unnecessary ring morphisms.
Use prime degree, large Galois group: e.g., xp − x − 1.

This talk: Switch from cyclotomics to other Galois number fields.
Another popular example in algebraic-number-theory textbooks:
multiquadratics; e.g., Q(

√
2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17,
√

19,
√

23).

Daniel J. Bernstein & Christine van Vredendaal multiquad 9

Non-cyclotomic lattice-based cryptography

Cyclotomics are scary. Let’s explore alternatives:

Eliminate the ideal structure.
e.g., use LWE instead of Ring-LWE.
But this limits the security achievable for key size K .

2016 Bernstein–Chuengsatiansup–Lange–van Vredendaal “NTRU
Prime” (preliminary announcement 2014.02, before these attacks):
as in discrete-log crypto, eliminate unnecessary ring morphisms.
Use prime degree, large Galois group: e.g., xp − x − 1.

This talk: Switch from cyclotomics to other Galois number fields.
Another popular example in algebraic-number-theory textbooks:
multiquadratics; e.g., Q(

√
2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17,
√

19,
√

23).

Daniel J. Bernstein & Christine van Vredendaal multiquad 9

Non-cyclotomic lattice-based cryptography

Cyclotomics are scary. Let’s explore alternatives:

Eliminate the ideal structure.
e.g., use LWE instead of Ring-LWE.
But this limits the security achievable for key size K .

2016 Bernstein–Chuengsatiansup–Lange–van Vredendaal “NTRU
Prime” (preliminary announcement 2014.02, before these attacks):
as in discrete-log crypto, eliminate unnecessary ring morphisms.
Use prime degree, large Galois group: e.g., xp − x − 1.

This talk: Switch from cyclotomics to other Galois number fields.
Another popular example in algebraic-number-theory textbooks:
multiquadratics; e.g., Q(

√
2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17,
√

19,
√

23).

Daniel J. Bernstein & Christine van Vredendaal multiquad 9

A reasonable multiquadratic cryptosystem

Case study of a lattice-based cryptosystem
that was already defined in detail for arbitrary number fields:
2010 Smart–Vercauteren, optimized version of 2009 Gentry.

Parameter: R = Z[α] for an algebraic integer α.
Secret key: very short g ∈ R.
Public key: gR.

To handle multiquadratics better,
we generalized beyond Z[α]; fixed a keygen speed problem;
used twisted Hadamard transforms as replacement for FFTs;
adapted 2011 Gentry–Halevi cyclotomic speedups to multiquadratics.

Like Smart–Vercauteren, took N ∈ λ2+o(1) for target security 2λ.
Checked security against standard lattice attacks:
nothing better than exponential time.

Daniel J. Bernstein & Christine van Vredendaal multiquad 10

A reasonable multiquadratic cryptosystem

Case study of a lattice-based cryptosystem
that was already defined in detail for arbitrary number fields:
2010 Smart–Vercauteren, optimized version of 2009 Gentry.

Parameter: R = Z[α] for an algebraic integer α.
Secret key: very short g ∈ R.
Public key: gR.

To handle multiquadratics better,
we generalized beyond Z[α]; fixed a keygen speed problem;
used twisted Hadamard transforms as replacement for FFTs;
adapted 2011 Gentry–Halevi cyclotomic speedups to multiquadratics.

Like Smart–Vercauteren, took N ∈ λ2+o(1) for target security 2λ.
Checked security against standard lattice attacks:
nothing better than exponential time.

Daniel J. Bernstein & Christine van Vredendaal multiquad 10

Part II: Some preliminaries

Daniel J. Bernstein & Christine van Vredendaal multiquad 11

Definition

A number field is a field L containing Q with finite dimension as a
Q-vector space. Its degree is this dimension.

Definition

The ring of integers OL of a number field L is the set of algebraic integers
in L. The invertible elements of this ring form the unit group O×L .

Problem

Recover a “small” g ∈ OL (modulo roots of unity) given gOL.

Definition (for this talk)

A multiquadratic field is a number field that can be written in the form
L = Q(

√
d1, . . . ,

√
dn), where (d1, . . . , dn) are distinct primes.

The degree of the multiquadratic field is N = 2n.

Daniel J. Bernstein & Christine van Vredendaal multiquad 12

General strategy to recover g

0 Compute the unit group O×L

1 Find some generator ug of principal ideal gOL

I subexponential time algorithm [1990 Buchmann, 2014 Biasse–Fieker,
2014 Biasse]

I quantum poly-time algorithm [2016 Biasse–Song]

2 Solve BDD for Log ug in the log-unit lattice to find Log u
I 2014 Campbell–Groves–Shepherd pointed out this was easy for

cyclotomic fields with h+ small
I 2015 Schanck confirmed experimentally
I 2015 Cramer–Ducas–Peikert–Regev proved pre-quantum polynomial

time for these fields

(BDD: bounded-distance decoding; i.e., finding a lattice vector close to an input point.)

Daniel J. Bernstein & Christine van Vredendaal multiquad 13

General strategy to recover g

0 Compute the unit group O×L
1 Find some generator ug of principal ideal gOL

I subexponential time algorithm [1990 Buchmann, 2014 Biasse–Fieker,
2014 Biasse]

I quantum poly-time algorithm [2016 Biasse–Song]

2 Solve BDD for Log ug in the log-unit lattice to find Log u
I 2014 Campbell–Groves–Shepherd pointed out this was easy for

cyclotomic fields with h+ small
I 2015 Schanck confirmed experimentally
I 2015 Cramer–Ducas–Peikert–Regev proved pre-quantum polynomial

time for these fields

(BDD: bounded-distance decoding; i.e., finding a lattice vector close to an input point.)

Daniel J. Bernstein & Christine van Vredendaal multiquad 13

General strategy to recover g

0 Compute the unit group O×L
1 Find some generator ug of principal ideal gOL

I subexponential time algorithm [1990 Buchmann, 2014 Biasse–Fieker,
2014 Biasse]

I quantum poly-time algorithm [2016 Biasse–Song]

2 Solve BDD for Log ug in the log-unit lattice to find Log u
I 2014 Campbell–Groves–Shepherd pointed out this was easy for

cyclotomic fields with h+ small
I 2015 Schanck confirmed experimentally
I 2015 Cramer–Ducas–Peikert–Regev proved pre-quantum polynomial

time for these fields

(BDD: bounded-distance decoding; i.e., finding a lattice vector close to an input point.)

Daniel J. Bernstein & Christine van Vredendaal multiquad 13

Definition

Fix a number field L of degree N and fix distinct complex embeddings
σ1, . . . , σN of L. The Dirichlet logarithm map is defined as

Log : L× 7→ RN

x 7→ (log |σ1(x)|, . . . , log |σN(x)|)

Theorem (Dirichlet Unit Theorem)

The kernel of Log |OL−{0} is the cyclic group of roots of unity in OL. Let

Λ = LogO×L ⊂ RN . Λ is a lattice of rank r + c − 1, where r is the number
of real embeddings and c is the number of complex-conjugate pairs of
non-real embeddings of L.

Fact

If hOL = gOL and g 6= 0 then h = ug for some u ∈ O×L , and

Log g ∈ Log h + Λ.

Daniel J. Bernstein & Christine van Vredendaal multiquad 14

Definition

Fix a number field L of degree N and fix distinct complex embeddings
σ1, . . . , σN of L. The Dirichlet logarithm map is defined as

Log : L× 7→ RN

x 7→ (log |σ1(x)|, . . . , log |σN(x)|)

Theorem (Dirichlet Unit Theorem)

The kernel of Log |OL−{0} is the cyclic group of roots of unity in OL. Let

Λ = LogO×L ⊂ RN . Λ is a lattice of rank r + c − 1, where r is the number
of real embeddings and c is the number of complex-conjugate pairs of
non-real embeddings of L.

Fact

If hOL = gOL and g 6= 0 then h = ug for some u ∈ O×L , and

Log g ∈ Log h + Λ.

Daniel J. Bernstein & Christine van Vredendaal multiquad 14

Definition

Fix a number field L of degree N and fix distinct complex embeddings
σ1, . . . , σN of L. The Dirichlet logarithm map is defined as

Log : L× 7→ RN

x 7→ (log |σ1(x)|, . . . , log |σN(x)|)

Theorem (Dirichlet Unit Theorem)

The kernel of Log |OL−{0} is the cyclic group of roots of unity in OL. Let

Λ = LogO×L ⊂ RN . Λ is a lattice of rank r + c − 1, where r is the number
of real embeddings and c is the number of complex-conjugate pairs of
non-real embeddings of L.

Fact

If hOL = gOL and g 6= 0 then h = ug for some u ∈ O×L , and

Log g ∈ Log h + Λ.

Daniel J. Bernstein & Christine van Vredendaal multiquad 14

Part III: The algorithm

https://starecat.com/algorithm-word-used-by-programmers-when-they-do-not-want-to-explain-what-they-did/

Daniel J. Bernstein & Christine van Vredendaal multiquad 15

https://starecat.com/algorithm-word-used-by-programmers-when-they-do-not-want-to-explain-what-they-did/

Algorithm idea 1: subfields

Multiquadratic fields have a huge number of subfields

Daniel J. Bernstein & Christine van Vredendaal multiquad 16

Algorithm idea 1: subfields

Multiquadratic fields have a huge number of subfields

Q

Q(
√

5) Q(
√

13) Q(
√

17) Q(
√

65) Q(
√

85) Q(
√

221) Q(
√

1105)

Q(
√

5,
√

13) Q(
√

5,
√

17) Q(
√

13,
√

17) Q(
√

5,
√

221) Q(
√

13,
√

85) Q(
√

17,
√

65) Q(
√

65,
√

85)

K = Q(
√

5,
√

13,
√

17)

Daniel J. Bernstein & Christine van Vredendaal multiquad 16

Algorithm idea 1: subfields

Multiquadratic fields have a huge number of subfields
We use 3 specific ones (plus recursion)

Q

Q(
√

5) Q(
√

13) Q(
√

17) Q(
√

65) Q(
√

85) Q(
√

221) Q(
√

1105)

Q(
√

5,
√

13) Q(
√

5,
√

17) Q(
√

5,
√

221)

K = Q(
√

5,
√

13,
√

17)

Daniel J. Bernstein & Christine van Vredendaal multiquad 16

Algorithm idea 1: subfields

Multiquadratic fields have a huge number of subfields
We use 3 specific ones (plus recursion)

Q

Q(
√

5)Q(
√

13)Q(
√

17)Q(
√

29)Q(
√

65)Q(
√

85)Q(
√

145)Q(
√

221)Q(
√

377)Q(
√

493) Q(
√

640)Q(
√

1105)Q(
√

1885)Q(
√

2465) Q(
√

6409)Q(
√

32045)

Q(
√

5,
√

13) Q(
√

5,
√

17) Q(
√

5,
√

29) Q(
√

5,
√

221) Q(
√

5,
√

377) Q(
√

5,
√

493) Q(
√

5,
√

6409)

Q(
√

5,
√

13,
√

17) Q(
√

5,
√

13,
√

29) Q(
√

5,
√

13,
√

493)

K = Q(
√

5,
√

13,
√

17,
√

29)

Daniel J. Bernstein & Christine van Vredendaal multiquad 16

Algorithm idea 2: the subfield relation

Let σ be the automorphism of L that negates
√
dn and fixes other

√
dj .

Define Kσ = {x ∈ L : σ(x) = x} as the field fixed by σ.
The norm Nσ(x) of x ∈ L is defined as xσ(x). Then Nσ(x) ∈ Kσ.

Let τ be the automorphism of L that negates
√
dn−1 and fixes other

√
dj .

Nσ(x) = xσ(x)

Nτ (x) = xτ(x)

σ(Nστ (x)) = σ(xσ(τ(x))) = σ(x)τ(x)

x2 = Nσ(x)Nτ (x)/σ(Nστ (x))

Daniel J. Bernstein & Christine van Vredendaal multiquad 17

Algorithm idea 2: the subfield relation

Let σ be the automorphism of L that negates
√
dn and fixes other

√
dj .

Define Kσ = {x ∈ L : σ(x) = x} as the field fixed by σ.
The norm Nσ(x) of x ∈ L is defined as xσ(x). Then Nσ(x) ∈ Kσ.

Let τ be the automorphism of L that negates
√

dn−1 and fixes other
√

dj .

Nσ(x) = xσ(x)

Nτ (x) = xτ(x)

σ(Nστ (x)) = σ(xσ(τ(x)))

= σ(x)τ(x)

x2 = Nσ(x)Nτ (x)/σ(Nστ (x))

Daniel J. Bernstein & Christine van Vredendaal multiquad 17

Algorithm idea 2: the subfield relation

Let σ be the automorphism of L that negates
√
dn and fixes other

√
dj .

Define Kσ = {x ∈ L : σ(x) = x} as the field fixed by σ.
The norm Nσ(x) of x ∈ L is defined as xσ(x). Then Nσ(x) ∈ Kσ.

Let τ be the automorphism of L that negates
√

dn−1 and fixes other
√

dj .

Nσ(x) = xσ(x)

Nτ (x) = xτ(x)

σ(Nστ (x)) = σ(xσ(τ(x))) = σ(x)τ(x)

x2 = Nσ(x)Nτ (x)/σ(Nστ (x))

Daniel J. Bernstein & Christine van Vredendaal multiquad 17

Algorithm idea 2: the subfield relation

Let σ be the automorphism of L that negates
√
dn and fixes other

√
dj .

Define Kσ = {x ∈ L : σ(x) = x} as the field fixed by σ.
The norm Nσ(x) of x ∈ L is defined as xσ(x). Then Nσ(x) ∈ Kσ.

Let τ be the automorphism of L that negates
√

dn−1 and fixes other
√

dj .

Nσ(x) = xσ(x)

Nτ (x) = xτ(x)

σ(Nστ (x)) = σ(xσ(τ(x))) = σ(x)τ(x)

x2 = Nσ(x)Nτ (x)/σ(Nστ (x))

Daniel J. Bernstein & Christine van Vredendaal multiquad 17

Algorithm idea 3: computing units via subfields

Can use the subfield relation to find the unit group O×L

u2 = Nσ(u)Nτ (u)/σ(Nστ (u))

If UL = O×Kσ · O
×
Kτ
· σ(O×Kστ), then

(O×L)2 ⊆ UL ⊆ O×L

So if we can find a basis for (O×L)2, taking square roots gives O×L .

1966 Wada: We can do this—in exponential time!
Check which products of subsets of basis vectors for UL are squares.

Better: polynomial time, adapting 1991 Adleman idea from NFS.
Define many quadratic characters χi : O×L → Z/2Z.
Almost certainly (O×L)2 = UL ∩ (

⋂
i Kerχi). Compute by linear algebra.

Daniel J. Bernstein & Christine van Vredendaal multiquad 18

Algorithm idea 3: computing units via subfields

Can use the subfield relation to find the unit group O×L

u2 = Nσ(u)Nτ (u)/σ(Nστ (u))

If UL = O×Kσ · O
×
Kτ
· σ(O×Kστ), then

(O×L)2 ⊆ UL ⊆ O×L

So if we can find a basis for (O×L)2, taking square roots gives O×L .

1966 Wada: We can do this—in exponential time!
Check which products of subsets of basis vectors for UL are squares.

Better: polynomial time, adapting 1991 Adleman idea from NFS.
Define many quadratic characters χi : O×L → Z/2Z.
Almost certainly (O×L)2 = UL ∩ (

⋂
i Kerχi). Compute by linear algebra.

Daniel J. Bernstein & Christine van Vredendaal multiquad 18

Algorithm idea 3: computing units via subfields

Can use the subfield relation to find the unit group O×L

u2 = Nσ(u)Nτ (u)/σ(Nστ (u))

If UL = O×Kσ · O
×
Kτ
· σ(O×Kστ), then

(O×L)2 ⊆ UL ⊆ O×L

So if we can find a basis for (O×L)2, taking square roots gives O×L .

1966 Wada: We can do this—in exponential time!
Check which products of subsets of basis vectors for UL are squares.

Better: polynomial time, adapting 1991 Adleman idea from NFS.
Define many quadratic characters χi : O×L → Z/2Z.
Almost certainly (O×L)2 = UL ∩ (

⋂
i Kerχi). Compute by linear algebra.

Daniel J. Bernstein & Christine van Vredendaal multiquad 18

Algorithm idea 3: computing units via subfields

Can use the subfield relation to find the unit group O×L

u2 = Nσ(u)Nτ (u)/σ(Nστ (u))

If UL = O×Kσ · O
×
Kτ
· σ(O×Kστ), then

(O×L)2 ⊆ UL ⊆ O×L

So if we can find a basis for (O×L)2, taking square roots gives O×L .

1966 Wada: We can do this—in exponential time!
Check which products of subsets of basis vectors for UL are squares.

Better: polynomial time, adapting 1991 Adleman idea from NFS.
Define many quadratic characters χi : O×L → Z/2Z.
Almost certainly (O×L)2 = UL ∩ (

⋂
i Kerχi). Compute by linear algebra.

Daniel J. Bernstein & Christine van Vredendaal multiquad 18

Algorithm idea 4: recovering generators via subfields

Fact

Can compute Nσ(g)OKσ quickly from gOL.

Apply algorithm recursively to find generator hσ of Nσ(g)OKσ .
i.e. hσ = uσNσ(g) for some unit uσ.

Similarly hτ , hστ . Compute

h =
hσhτ
σ(hστ)

=
uσNσ(g)uτNτ (g)

σ(uστ)σ(Nστ (g))
.

Subfield relation: h = ug2 for some u ∈ O×L .

Problem: This is not necessarily a square!
Solution: Use quadratic characters to find v ∈ O×L with square vh.

Last step is to shorten the generator u′g =
√
vh by solving the BDD

problem in the log-unit lattice.

Daniel J. Bernstein & Christine van Vredendaal multiquad 19

Algorithm idea 4: recovering generators via subfields

Fact

Can compute Nσ(g)OKσ quickly from gOL.

Apply algorithm recursively to find generator hσ of Nσ(g)OKσ .
i.e. hσ = uσNσ(g) for some unit uσ.

Similarly hτ , hστ . Compute

h =
hσhτ
σ(hστ)

=
uσNσ(g)uτNτ (g)

σ(uστ)σ(Nστ (g))
.

Subfield relation: h = ug2 for some u ∈ O×L .

Problem: This is not necessarily a square!
Solution: Use quadratic characters to find v ∈ O×L with square vh.

Last step is to shorten the generator u′g =
√
vh by solving the BDD

problem in the log-unit lattice.

Daniel J. Bernstein & Christine van Vredendaal multiquad 19

Algorithm idea 4: recovering generators via subfields

Fact

Can compute Nσ(g)OKσ quickly from gOL.

Apply algorithm recursively to find generator hσ of Nσ(g)OKσ .
i.e. hσ = uσNσ(g) for some unit uσ.

Similarly hτ , hστ . Compute

h =
hσhτ
σ(hστ)

=
uσNσ(g)uτNτ (g)

σ(uστ)σ(Nστ (g))
.

Subfield relation: h = ug2 for some u ∈ O×L .

Problem: This is not necessarily a square!

Solution: Use quadratic characters to find v ∈ O×L with square vh.

Last step is to shorten the generator u′g =
√
vh by solving the BDD

problem in the log-unit lattice.

Daniel J. Bernstein & Christine van Vredendaal multiquad 19

Algorithm idea 4: recovering generators via subfields

Fact

Can compute Nσ(g)OKσ quickly from gOL.

Apply algorithm recursively to find generator hσ of Nσ(g)OKσ .
i.e. hσ = uσNσ(g) for some unit uσ.

Similarly hτ , hστ . Compute

h =
hσhτ
σ(hστ)

=
uσNσ(g)uτNτ (g)

σ(uστ)σ(Nστ (g))
.

Subfield relation: h = ug2 for some u ∈ O×L .

Problem: This is not necessarily a square!
Solution: Use quadratic characters to find v ∈ O×L with square vh.

Last step is to shorten the generator u′g =
√
vh by solving the BDD

problem in the log-unit lattice.

Daniel J. Bernstein & Christine van Vredendaal multiquad 19

Algorithm idea 4: recovering generators via subfields

Fact

Can compute Nσ(g)OKσ quickly from gOL.

Apply algorithm recursively to find generator hσ of Nσ(g)OKσ .
i.e. hσ = uσNσ(g) for some unit uσ.

Similarly hτ , hστ . Compute

h =
hσhτ
σ(hστ)

=
uσNσ(g)uτNτ (g)

σ(uστ)σ(Nστ (g))
.

Subfield relation: h = ug2 for some u ∈ O×L .

Problem: This is not necessarily a square!
Solution: Use quadratic characters to find v ∈ O×L with square vh.

Last step is to shorten the generator u′g =
√
vh by solving the BDD

problem in the log-unit lattice.

Daniel J. Bernstein & Christine van Vredendaal multiquad 19

Algorithm 1: MQPIP(L, I)

Input: Real multiquadratic field L and a
basis matrix for a principal ideal I of OL

Result: A short generator g for I
1 if [L : Q] = 2 then
2 return QPIP(L, I)

3 σ, τ ← Gal(L/Q)
4 for ` ∈ {σ, τ, στ} do
5 Set K` so that Gal(L/K`) = 〈`〉
6 I` ← (I · σ`(I)) ∩ K` = N`(I)
7 g`,U` ← MQPIP(K`, I`)
8 O×L ,X ← UnitGroupFromSubgroup(U`)
9 h← gσgτσ(g−1στ)

10 g ′ ← IdealSqrt(h,O×L ,X)
11 g ← ShortenGen(g ′,O×L)
12 return g ,O×L

Daniel J. Bernstein & Christine van Vredendaal multiquad 20

Algorithm 1: MQPIP(L, I)

Input: Real multiquadratic field L and a
basis matrix for a principal ideal I of OL

Result: A short generator g for I
1 if [L : Q] = 2 then
2 return QPIP(L, I) . N2 · exp((ln |D|)1/2+o(1))

3 σ, τ ← Gal(L/Q)
4 for ` ∈ {σ, τ, στ} do
5 Set K` so that Gal(L/K`) = 〈`〉
6 I` ← (I · σ`(I)) ∩ K` = N`(I)
7 g`,U` ← MQPIP(K`, I`)
8 O×L ,X ← UnitGroupFromSubgroup(U`) . O(N5B)
9 h← gσgτσ(g−1στ) . O(NB)

10 g ′ ← IdealSqrt(h,O×L ,X) . O(N4B)
11 g ← ShortenGen(g ′,O×L) . O(N5)
12 return g ,O×L

Daniel J. Bernstein & Christine van Vredendaal multiquad 20

Part IV: Results

Daniel J. Bernstein & Christine van Vredendaal multiquad 21

Speed Results (in seconds)

units
n 2n old tower old absolute new keygen attack

3 8 0.05 0.03 0.83 0.006 0.24
4 16 0.51 0.24 2.23 0.007 1.10
5 32 7.24 4.80 5.98 0.025 4.24
6 64 >700000.00 >700000.00 31.12 0.050 18.78
7 128 176.98 0.171 88.56
8 256 1855.05 0.834 452.75

Daniel J. Bernstein & Christine van Vredendaal multiquad 22

Coefficient Results
Vertical axis: Average absolute coefficients of Log g on MQ basis.
Horizontal axis: 1.11/(2n/2 log(uD)).

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●
●

●

●
●

●

●

●

●
●

●●●

●
●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●
●●

●

●

●

●●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●●

●
●●●●

●●
●

●
●

●

●

●

●

●
●

●
●●●●

●
●

●

●●

●

●

●●●

●
●

●
●

●●

●

●
●●

●
●

●

●
●

●●
●

●
●

●●●

●
●

●

●

●

●

●

●

●

●
●●

●●●●

●

●

●●●

●

●

●

●

●●

●
●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●●
●

●●

●

●

●●●●
●

●

●

●

●

●●●●●

●●

●●

●
●

●

●●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● n = 3

● n = 4

● n = 5

● n = 6
● x = y

10-4 0.001 0.010 0.100 1

10-4

0.001

0.010

0.100

1

Daniel J. Bernstein & Christine van Vredendaal multiquad 23

Failure Results
Vertical axis: Failure probability of simple rounding (without enumeration).
Horizontal axis: d1, using n consecutive primes for (d1, . . . , dn).

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ●
● ● ●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

● ●
●

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● n = 1

● n = 2

● n = 3

● n = 4

● n = 5

● n = 6

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Daniel J. Bernstein & Christine van Vredendaal multiquad 24

Figure: A multitude of quads.

Questions?

Daniel J. Bernstein & Christine van Vredendaal multiquad 25

