
Short generators without quantum computers:
the case of multiquadratics

Christine van Vredendaal

Technische Universiteit Eindhoven

1 May 2017

Joint work with:
Jens Bauch & Daniel J. Bernstein & Henry de Valence & Tanja Lange

Christine van Vredendaal multiquad 1



Part I: Introduction
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“Lattice-based crypto is secure because lattice problems are hard.”

— Everyone who works on lattice-based crypto

Really? How hard are they? Which cryptosystems are secure?
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How secure?

Multiple attack avenues showing progress

Sieving asymptotics for dimension-N SVP
I 2008 Nguyen–Vidick: 2(0.415+o(1))N

I 2015 Becker–Ducas–Gama–Laarhoven: 2(0.292+o(1))N

I 2014 Laarhoven–Mosca–van de Pol: Quantumly 2(0.268+o(1))N

Pre-quantum attacks against cyclotomic ideal lattice problems
I 2017 Biasse–Espitau–Fouque–Gélin–Kirchner: L|∆|(1/2) (see next talk)

Quantum attacks against cyclotomic ideal lattice problems
I 2015 Biasse–Song (using 2014 Campbell–Groves–Shepherd): poly-time

quantum algorithm against short generators
I 2016 Cramer–Ducas–Peikert–Regev: general analysis for arbitrary

principal ideals (within an eÕ(n1/2) approximation factor)
I 2016 Cramer–Ducas–Wesolowski: generalize to any ideal
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principal ideals (within an eÕ(n1/2) approximation factor)
I 2016 Cramer–Ducas–Wesolowski: generalize to any ideal

Christine van Vredendaal multiquad 4



How secure?

Multiple attack avenues showing progress

Sieving asymptotics for dimension-N SVP
I 2008 Nguyen–Vidick: 2(0.415+o(1))N

I 2015 Becker–Ducas–Gama–Laarhoven: 2(0.292+o(1))N

I 2014 Laarhoven–Mosca–van de Pol: Quantumly 2(0.268+o(1))N

Pre-quantum attacks against cyclotomic ideal lattice problems
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Non-cyclotomic lattice-based cryptography

Cyclotomics are scary. Let’s explore alternatives:

Eliminate the ideal structure.
e.g., use LWE instead of Ring-LWE.
But this limits the security achievable for key size K .

2016 Bernstein–Chuengsatiansup–Lange–van Vredendaal “NTRU
Prime”: eliminate unnecessary ring morphisms.
Use prime degree, large Galois group: e.g., xp − x − 1.

This talk: Switch from cyclotomics to other Galois number fields.
Another popular example in algebraic-number-theory textbooks:
multiquadratics; e.g., Q(

√
2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17,
√

19,
√

23).
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A reasonable multiquadratic cryptosystem

Case study of a lattice-based cryptosystem
that was already defined in detail for arbitrary number fields:
2010 Smart–Vercauteren, optimized version of 2009 Gentry.

Parameter: R = Z[α] for an algebraic integer α.
Secret key: very short g ∈ R.
Public key: gR.

Like Smart–Vercauteren, we took N ∈ λ2+o(1) for target security 2λ.
Checked security against standard lattice attacks:
nothing better than exponential time.
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Part II: Some preliminaries
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Definition

A number field is a field L containing Q with finite dimension as a
Q-vector space. Its degree is this dimension.

Definition

The ring of integers OL of a number field L is the set of algebraic integers
in L. The invertible elements of this ring form the unit group O×L .

Problem

Recover a “small” g ∈ OL (modulo roots of unity) given gOL.

Definition (for this talk)

A multiquadratic field is a number field that can be written in the form
L = Q(

√
d1, . . . ,

√
dn), where (d1, . . . , dn) are distinct primes.

The degree of the multiquadratic field is N = 2n.
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General strategy to recover g

0 Compute the unit group O×L

1 Find some generator ug of principal ideal gOL

I subexponential time algorithm [1990 Buchmann, 2014 Biasse–Fieker,
2014 Biasse]

I quantum poly-time algorithm [2016 Biasse–Song]

2 Solve BDD for Log ug in the log-unit lattice to find Log u
I 2014 Campbell–Groves–Shepherd pointed out this was easy for

cyclotomic fields with h+ small
I 2015 Schanck confirmed experimentally
I 2015 Cramer–Ducas–Peikert–Regev proved pre-quantum polynomial

time for these fields

(BDD: bounded-distance decoding; i.e., finding a lattice vector close to an input point.)
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Definition

Fix a number field L of degree N and fix distinct complex embeddings
σ1, . . . , σN of L. The Dirichlet logarithm map is defined as

Log : L× 7→ RN

x 7→ (log |σ1(x)|, . . . , log |σN(x)|)

Theorem (Dirichlet Unit Theorem)

The kernel of Log |OL−{0} is the cyclic group of roots of unity in OL. Let

Λ = LogO×L ⊂ RN . Λ is a lattice of rank r + c − 1, where r is the number
of real embeddings and c is the number of complex-conjugate pairs of
non-real embeddings of L.

Fact

If hOL = gOL and g 6= 0 then h = ug for some u ∈ O×L , and

Log g ∈ Log h + Λ.
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Part III: The algorithm

https://starecat.com/algorithm-word-used-by-programmers-when-they-do-not-want-to-explain-what-they-did/
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Algorithm idea 1: subfields

Multiquadratic fields have a huge number of subfields
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Algorithm idea 1: subfields

Multiquadratic fields have a huge number of subfields
We use 3 specific ones (plus recursion)
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Algorithm idea 2: the subfield relation

Let σ be the automorphism of L that negates
√
dn and fixes other

√
dj .

Define Kσ = {x ∈ L : σ(x) = x} as the field fixed by σ.
The norm Nσ(x) of x ∈ L is defined as xσ(x). Then Nσ(x) ∈ Kσ.

Let τ be the automorphism of L that negates
√
dn−1 and fixes other

√
dj .

Nσ(x) = xσ(x)

Nτ (x) = xτ(x)

σ(Nστ (x)) = σ(xσ(τ(x))) = σ(x)τ(x)

x2 = Nσ(x)Nτ (x)/σ(Nστ (x))
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Algorithm idea 3: computing units via subfields

Can use the subfield relation to find the unit group O×L

u2 = Nσ(u)Nτ (u)/σ(Nστ (u))

If UL = O×Kσ
· O×Kτ

· σ(O×Kστ
), then

(O×L )2 ⊆ UL ⊆ O×L

So if we can find a basis for (O×L )2, taking square roots gives O×L .

We can do this—in polynomial time!

Adapting 1991 Adleman idea from NFS:
Define many quadratic characters χi : O×L → Z/2Z.
Almost certainly (O×L )2 = UL ∩ (

⋂
i Kerχi ). Compute by linear algebra.
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Algorithm idea 4: recovering generators via subfields

Fact

Can compute Nσ(g)OKσ quickly from hOL.

Apply algorithm recursively to find generator hσ of Nσ(g)OKσ .
i.e. hσ = uσNσ(g) for some unit uσ.

Similarly hτ , hστ . Compute

h =
hσhτ
σ(hστ )

=
uσNσ(g)uτNτ (g)

σ(uστ )σ(Nστ (g))
.

Subfield relation: h = ug2 for some u ∈ O×L .

Problem: This is not necessarily a square!
Solution: Use quadratic characters to find v ∈ O×L with square vh.

Last step is to shorten the generator u′g =
√
vh by solving the BDD

problem in the log-unit lattice.
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Algorithm 1: MQPIP(L, I)

Input: Real multiquadratic field L and a
basis matrix for a principal ideal I of OL

Result: A short generator g for I
1 if [L : Q] = 2 then
2 return QPIP(L, I)

3 σ, τ ← Gal(L/Q)
4 for ` ∈ {σ, τ, στ} do
5 Set K` so that Gal(L/K`) = 〈`〉
6 I` ← (I · σ`(I)) ∩ K` = N`(I)
7 g`,U` ← MQPIP(K`, I`)
8 O×L ,X ← UnitsGivenSubgroup(U`)
9 h← gσgτσ(g−1

στ )
10 g ′ ← IdealSqrt(h,O×L ,X )
11 g ← ShortenGen(g ′,O×L )
12 return g ,O×L

Christine van Vredendaal multiquad 16



Algorithm 1: MQPIP(L, I)

Input: Real multiquadratic field L and a
basis matrix for a principal ideal I of OL

Result: A short generator g for I
1 if [L : Q] = 2 then
2 return QPIP(L, I) . O(NB)

3 σ, τ ← Gal(L/Q)
4 for ` ∈ {σ, τ, στ} do
5 Set K` so that Gal(L/K`) = 〈`〉
6 I` ← (I · σ`(I)) ∩ K` = N`(I)
7 g`,U` ← MQPIP(K`, I`)
8 O×L ,X ← UnitsGivenSubgroup(U`) . O(N7) (exp. O(N2+log2 3B))
9 h← gσgτσ(g−1

στ ) . O(N2B)
10 g ′ ← IdealSqrt(h,O×L ,X ) . O(N3 + N2B)
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Part IV: Results
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Attack Speed Results (in seconds)

2n tower absolute new new2 attack attack2

8 0.05 0.03 0.90 0.91 0.07 0.07
16 0.48 0.24 2.33 2.39 0.20 0.19
32 6.75 4.73 6.61 7.36 0.56 0.51
64 >700000 >700000 23.30 37.51 1.51 1.51

128 93.02 1560.49 4.95 7.29
256 463.91 31469.23 27.95 100.65

Table : Observed time to compute (once) the unit group of Q(
√
d1, . . . ,

√
dn);

and to find a generator for the public key in the cryptosystem.
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Attack Success Results

n 3 4 5 6 7 8

psuc(L1) 0.122 0.137 0.132 0.036 0.001 0.000

psuc(Ln) 0.203 0.490 0.648 0.936 0.631 0.423

psuc(Ln2) 0.784 0.981 1.000 1.000 1.000 1.000

Table : Observed attack success probabilities for various multiquadratic fields.
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Figure : A multitude of quads.

Questions?
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