Short generators without quantum computers: the case of multiquadratics

Christine van Vredendaal

Technische Universiteit Eindhoven

1 May 2017

Joint work with: Jens Bauch & Daniel J. Bernstein & Henry de Valence & Tanja Lange

Part I: Introduction

"Lattice-based crypto is secure because lattice problems are hard." — Everyone who works on lattice-based crypto "Lattice-based crypto is secure because lattice problems are hard." — Everyone who works on lattice-based crypto

Really? How hard are they? Which cryptosystems are secure?

How secure?

Multiple attack avenues showing progress

- Sieving asymptotics for dimension-N SVP
	- ▶ 2008 Nguyen–Vidick: $2^{(0.415+o(1))N}$
	- ▶ 2015 Becker–Ducas–Gama–Laarhoven: $2^{(0.292+o(1))N}$
	- ▶ 2014 Laarhoven–Mosca–van de Pol: Quantumly $2^{(0.268+o(1))N}$

How secure?

Multiple attack avenues showing progress

- Sieving asymptotics for dimension-N SVP
	- ▶ 2008 Nguyen–Vidick: $2^{(0.415+o(1))N}$
	- ▶ 2015 Becker–Ducas–Gama–Laarhoven: $2^{(0.292+o(1))N}$
	- ▶ 2014 Laarhoven–Mosca–van de Pol: Quantumly $2^{(0.268+o(1))N}$
- **•** Pre-quantum attacks against cyclotomic ideal lattice problems
	- ▶ 2017 Biasse–Espitau–Fouque–Gélin–Kirchner: $L_{|\Delta|}(1/2)$ (see next talk)

How secure?

Multiple attack avenues showing progress

- Sieving asymptotics for dimension-N SVP
	- ▶ 2008 Nguyen–Vidick: $2^{(0.415+o(1))N}$
	- ▶ 2015 Becker-Ducas-Gama-Laarhoven: $2^{(0.292+o(1))N}$
	- ▶ 2014 Laarhoven–Mosca–van de Pol: Quantumly $2^{(0.268+o(1))N}$
- **•** Pre-quantum attacks against cyclotomic ideal lattice problems
	- ▶ 2017 Biasse–Espitau–Fouque–Gélin–Kirchner: $L_{|\Delta|}(1/2)$ (see next talk)
- Quantum attacks against cyclotomic ideal lattice problems
	- ▶ 2015 Biasse–Song (using 2014 Campbell–Groves–Shepherd): poly-time quantum algorithm against short generators
	- ▶ 2016 Cramer-Ducas-Peikert-Regev: general analysis for arbitrary principal ideals (within an $e^{\tilde{O}(n^{1/2})}$ approximation factor)
	- ▶ 2016 Cramer–Ducas–Wesolowski: generalize to any ideal

Non-cyclotomic lattice-based cryptography

Cyclotomics are scary. Let's explore alternatives:

• Eliminate the ideal structure. e.g., use LWE instead of Ring-LWE. But this limits the security achievable for key size K .

Non-cyclotomic lattice-based cryptography

Cyclotomics are scary. Let's explore alternatives:

- **Eliminate the ideal structure.** e.g., use LWE instead of Ring-LWE. But this limits the security achievable for key size K .
- 2016 Bernstein–Chuengsatiansup–Lange–van Vredendaal "NTRU Prime": eliminate unnecessary ring morphisms. Use prime degree, large Galois group: e.g., $x^p - x - 1$.

Non-cyclotomic lattice-based cryptography

Cyclotomics are scary. Let's explore alternatives:

- **Eliminate the ideal structure.** e.g., use LWE instead of Ring-LWE. But this limits the security achievable for key size K .
- 2016 Bernstein–Chuengsatiansup–Lange–van Vredendaal "NTRU Prime": eliminate unnecessary ring morphisms. Use prime degree, large Galois group: e.g., $x^p - x - 1$.
- This talk: Switch from cyclotomics to other Galois number fields. Another popular example in algebraic-number-theory textbooks: multiquadratics; e.g., $\mathbf{Q}(\sqrt{2},\sqrt{3},\sqrt{5},\sqrt{7},\sqrt{11},\sqrt{13},\sqrt{17},\sqrt{19},$ √ 23).

A reasonable multiquadratic cryptosystem

Case study of a lattice-based cryptosystem that was already defined in detail for arbitrary number fields: 2010 Smart–Vercauteren, optimized version of 2009 Gentry.

Parameter: $R = \mathbf{Z}[\alpha]$ for an algebraic integer α . Secret key: very short $g \in R$. Public key: gR .

A reasonable multiquadratic cryptosystem

Case study of a lattice-based cryptosystem that was already defined in detail for arbitrary number fields: 2010 Smart–Vercauteren, optimized version of 2009 Gentry.

Parameter: $R = \mathbf{Z}[\alpha]$ for an algebraic integer α . Secret key: very short $g \in R$. Public key: gR .

Like Smart–Vercauteren, we took $\mathcal{N}\in\lambda^{2+o(1)}$ for target security $2^\lambda.$ Checked security against standard lattice attacks: nothing better than exponential time.

Part II: Some preliminaries

A number field is a field L containing $\mathbb Q$ with finite dimension as a Q-vector space. Its degree is this dimension.

Definition

The ring of integers \mathcal{O}_I of a number field L is the set of algebraic integers in L. The invertible elements of this ring form the unit group \mathcal{O}_I^\times \tilde{L} .

Problem

Recover a "small" $g \in \mathcal{O}_L$ (modulo roots of unity) given $g\mathcal{O}_L$.

Definition (for this talk)

A multiquadratic field is a number field that can be written in the form A multiquadratic field is a number field that can be written in
 $L = \mathbb{Q}(\sqrt{d_1}, \dots, \sqrt{d_n})$, where (d_1, \dots, d_n) are distinct primes.

The degree of the multiquadratic field is $N = 2^n$.

General strategy to recover g

 \bullet Compute the unit group \mathcal{O}_L^\times L

General strategy to recover g

- \bullet Compute the unit group \mathcal{O}_L^\times L
- **1** Find some generator ug of principal ideal gO_L
	- \triangleright subexponential time algorithm [1990 Buchmann, 2014 Biasse-Fieker, 2014 Biasse]
	- \triangleright quantum poly-time algorithm [2016 Biasse–Song]

General strategy to recover g

- \bullet Compute the unit group \mathcal{O}_L^\times L
- **1** Find some generator ug of principal ideal gO_L
	- \triangleright subexponential time algorithm [1990 Buchmann, 2014 Biasse–Fieker, 2014 Biasse]
	- \triangleright quantum poly-time algorithm [2016 Biasse–Song]
- **2** Solve BDD for $\text{Log } ug$ in the log-unit lattice to find $\text{Log } u$
	- \triangleright 2014 Campbell–Groves–Shepherd pointed out this was easy for cyclotomic fields with h^+ small
	- \triangleright 2015 Schanck confirmed experimentally
	- ▶ 2015 Cramer–Ducas–Peikert–Regev proved pre-quantum polynomial time for these fields

(BDD: bounded-distance decoding; i.e., finding a lattice vector close to an input point.)

Fix a number field L of degree N and fix distinct complex embeddings $\sigma_1, \ldots, \sigma_N$ of L. The Dirichlet logarithm map is defined as

$$
\begin{array}{rcl}\n\text{Log} : L^{\times} & \mapsto & \mathbb{R}^N \\
\downarrow x & \mapsto & (\log |\sigma_1(x)|, \ldots, \log |\sigma_N(x)|)\n\end{array}
$$

Fix a number field L of degree N and fix distinct complex embeddings $\sigma_1, \ldots, \sigma_N$ of L. The Dirichlet logarithm map is defined as

$$
\begin{array}{rcl}\n\text{Log} : L^{\times} & \mapsto & \mathbb{R}^N \\
& x & \mapsto & (\log |\sigma_1(x)|, \dots, \log |\sigma_N(x)|)\n\end{array}
$$

Theorem (Dirichlet Unit Theorem)

The kernel of $\text{Log}\left|_{\mathcal{O}_L-\{0\}}\right|$ is the cyclic group of roots of unity in \mathcal{O}_L . Let $\Lambda=\mathrm{Log}\,\mathcal{O}_L^\times\subset\mathbb{R}^N.$ Λ is a lattice of rank $r+c-1,$ where r is the number of real embeddings and c is the number of complex-conjugate pairs of non-real embeddings of L.

Fix a number field L of degree N and fix distinct complex embeddings $\sigma_1, \ldots, \sigma_N$ of L. The Dirichlet logarithm map is defined as

$$
\begin{array}{rcl}\n\text{Log} : L^{\times} & \mapsto & \mathbb{R}^N \\
& x & \mapsto & (\log |\sigma_1(x)|, \dots, \log |\sigma_N(x)|)\n\end{array}
$$

Theorem (Dirichlet Unit Theorem)

The kernel of $\text{Log}\left|_{\mathcal{O}_L-\{0\}}\right|$ is the cyclic group of roots of unity in \mathcal{O}_L . Let $\Lambda=\mathrm{Log}\,\mathcal{O}_L^\times\subset\mathbb{R}^N.$ Λ is a lattice of rank $r+c-1,$ where r is the number of real embeddings and c is the number of complex-conjugate pairs of non-real embeddings of L.

Fact

If $h\mathcal{O}_L = g\mathcal{O}_L$ and $g \neq 0$ then $h = ug$ for some $u \in \mathcal{O}_L^\times$, and

 $\text{Log } g \in \text{Log } h + \Lambda.$

Part III: The algorithm

Word, used by programmers When they do not want to Explain what they did.

<https://starecat.com/algorithm-word-used-by-programmers-when-they-do-not-want-to-explain-what-they-did/>

Multiquadratic fields have a huge number of subfields

Multiquadratic fields have a huge number of subfields

Multiquadratic fields have a huge number of subfields We use 3 specific ones (plus recursion)

Multiquadratic fields have a huge number of subfields We use 3 specific ones (plus recursion)

Let σ be the automorphism of L that negates $\sqrt{d_n}$ and fixes other $\sqrt{d_j}.$

Define $K_{\sigma} = \{x \in L : \sigma(x) = x\}$ as the field fixed by σ . The norm $N_{\sigma}(x)$ of $x \in L$ is defined as $x\sigma(x)$. Then $N_{\sigma}(x) \in K_{\sigma}$.

Let σ be the automorphism of L that negates $\sqrt{d_n}$ and fixes other $\sqrt{d_j}.$

Define $K_{\sigma} = \{x \in L : \sigma(x) = x\}$ as the field fixed by σ . The norm $N_{\sigma}(x)$ of $x \in L$ is defined as $x\sigma(x)$. Then $N_{\sigma}(x) \in K_{\sigma}$.

Let τ be the automorphism of L that negates $\sqrt{d_{n-1}}$ and fixes other $\sqrt{d_j}.$

$$
N_{\sigma}(x) = x\sigma(x)
$$

\n
$$
N_{\tau}(x) = x\tau(x)
$$

\n
$$
\sigma(N_{\sigma\tau}(x)) = \sigma(x\sigma(\tau(x)))
$$

Let σ be the automorphism of L that negates $\sqrt{d_n}$ and fixes other $\sqrt{d_j}.$

Define $K_{\sigma} = \{x \in L : \sigma(x) = x\}$ as the field fixed by σ . The norm $N_{\sigma}(x)$ of $x \in L$ is defined as $x\sigma(x)$. Then $N_{\sigma}(x) \in K_{\sigma}$.

Let τ be the automorphism of L that negates $\sqrt{d_{n-1}}$ and fixes other $\sqrt{d_j}.$

$$
N_{\sigma}(x) = x\sigma(x)
$$

\n
$$
N_{\tau}(x) = x\tau(x)
$$

\n
$$
\sigma(N_{\sigma\tau}(x)) = \sigma(x\sigma(\tau(x))) = \sigma(x)\tau(x)
$$

Let σ be the automorphism of L that negates $\sqrt{d_n}$ and fixes other $\sqrt{d_j}.$

Define $K_{\sigma} = \{x \in L : \sigma(x) = x\}$ as the field fixed by σ . The norm $N_{\sigma}(x)$ of $x \in L$ is defined as $x\sigma(x)$. Then $N_{\sigma}(x) \in K_{\sigma}$.

Let τ be the automorphism of L that negates $\sqrt{d_{n-1}}$ and fixes other $\sqrt{d_j}.$

$$
N_{\sigma}(x) = x\sigma(x)
$$

\n
$$
N_{\tau}(x) = x\tau(x)
$$

\n
$$
\sigma(N_{\sigma\tau}(x)) = \sigma(x\sigma(\tau(x))) = \sigma(x)\tau(x)
$$

\n
$$
x^{2} = N_{\sigma}(x)N_{\tau}(x)/\sigma(N_{\sigma\tau}(x))
$$

Can use the subfield relation to find the unit group \mathcal{O}_I^\times L

$$
u^2 = N_{\sigma}(u)N_{\tau}(u)/\sigma(N_{\sigma\tau}(u))
$$

Can use the subfield relation to find the unit group \mathcal{O}_I^\times L

$$
u^2 = N_{\sigma}(u)N_{\tau}(u)/\sigma(N_{\sigma\tau}(u))
$$

If $U_L = \mathcal{O}_K^\times$ $\chi^{\times}_{K_{\sigma}} \cdot \mathcal{O}_{K_{\tau}}^{\times} \cdot \sigma(\mathcal{O}_{K_{\sigma}}^{\times})$ $\chi^{\times}_{\sigma\tau}$), then

$$
(\mathcal{O}_L^\times)^2 \subseteq U_L \subseteq \mathcal{O}_L^\times
$$

So if we can find a basis for (\mathcal{O}_I^{\times}) $_L^{\times})^2$, taking square roots gives \mathcal{O}_L^{\times} \tilde{L} .

Can use the subfield relation to find the unit group \mathcal{O}_I^\times L

$$
u^2 = N_{\sigma}(u)N_{\tau}(u)/\sigma(N_{\sigma\tau}(u))
$$

If $U_L = \mathcal{O}_K^\times$ $\chi^{\times}_{K_{\sigma}} \cdot \mathcal{O}_{K_{\tau}}^{\times} \cdot \sigma(\mathcal{O}_{K_{\sigma}}^{\times})$ $\chi^{\times}_{\sigma\tau}$), then

$$
(\mathcal{O}_L^\times)^2 \subseteq U_L \subseteq \mathcal{O}_L^\times
$$

So if we can find a basis for (\mathcal{O}_I^{\times}) $_L^{\times})^2$, taking square roots gives \mathcal{O}_L^{\times} \tilde{L} . We can do this—in polynomial time!

Can use the subfield relation to find the unit group \mathcal{O}_I^\times L

$$
u^2 = N_{\sigma}(u)N_{\tau}(u)/\sigma(N_{\sigma\tau}(u))
$$

If $U_L = \mathcal{O}_K^\times$ $\chi^{\times}_{K_{\sigma}} \cdot \mathcal{O}_{K_{\tau}}^{\times} \cdot \sigma(\mathcal{O}_{K_{\sigma}}^{\times})$ $\chi^{\times}_{\sigma\tau}$), then

$$
(\mathcal{O}_L^\times)^2 \subseteq U_L \subseteq \mathcal{O}_L^\times
$$

So if we can find a basis for (\mathcal{O}_I^{\times}) $_L^{\times})^2$, taking square roots gives \mathcal{O}_L^{\times} \tilde{L} .

We can do this—in polynomial time!

Adapting 1991 Adleman idea from NFS: Define many quadratic characters $\chi_i: \mathcal{O}_L^{\times} \to \mathbb{Z}/2\mathbb{Z}$. Almost certainly (\mathcal{O}_I^{\times}) $\mathcal{L}^{(\times)}_L$)² = $U_L \cap (\bigcap_i \mathsf{Ker\,} \chi_i).$ Compute by linear algebra.

Fact

Can compute $N_{\sigma}(g) \mathcal{O}_{K_{\sigma}}$ quickly from $h \mathcal{O}_L$.

Apply algorithm recursively to find generator h_σ of $N_\sigma(g){\mathcal O}_{K_\sigma}.$ i.e. $h_{\sigma} = u_{\sigma} N_{\sigma}(g)$ for some unit u_{σ} .

Fact

Can compute $N_{\sigma}(g) \mathcal{O}_{K_{\sigma}}$ quickly from $h\mathcal{O}_L$.

Apply algorithm recursively to find generator h_σ of $N_\sigma(g){\mathcal O}_{K_\sigma}.$ i.e. $h_{\sigma} = u_{\sigma} N_{\sigma}(g)$ for some unit u_{σ} .

Similarly h_{τ} , $h_{\sigma\tau}$. Compute

$$
h=\frac{h_{\sigma}h_{\tau}}{\sigma(h_{\sigma\tau})}=\frac{u_{\sigma}N_{\sigma}(g)u_{\tau}N_{\tau}(g)}{\sigma(u_{\sigma\tau})\sigma(N_{\sigma\tau}(g))}.
$$

Subfield relation: $h = ug^2$ for some $u \in \mathcal{O}_L^{\times}$.

Fact

Can compute $N_{\sigma}(g) \mathcal{O}_{K_{\sigma}}$ quickly from $h\mathcal{O}_L$.

Apply algorithm recursively to find generator h_σ of $N_\sigma(g){\mathcal O}_{K_\sigma}.$ i.e. $h_{\sigma} = u_{\sigma} N_{\sigma}(g)$ for some unit u_{σ} .

Similarly h_{τ} , $h_{\sigma\tau}$. Compute

$$
h=\frac{h_{\sigma}h_{\tau}}{\sigma(h_{\sigma\tau})}=\frac{u_{\sigma}N_{\sigma}(g)u_{\tau}N_{\tau}(g)}{\sigma(u_{\sigma\tau})\sigma(N_{\sigma\tau}(g))}.
$$

Subfield relation: $h = ug^2$ for some $u \in \mathcal{O}_L^{\times}$.

Problem: This is not necessarily a square!

Fact

Can compute $N_{\sigma}(g) \mathcal{O}_{K_{\sigma}}$ quickly from $h\mathcal{O}_L$.

Apply algorithm recursively to find generator h_σ of $N_\sigma(g){\mathcal O}_{K_\sigma}.$ i.e. $h_{\sigma} = u_{\sigma} N_{\sigma}(g)$ for some unit u_{σ} .

Similarly h_{τ} , $h_{\sigma\tau}$. Compute

$$
h=\frac{h_{\sigma}h_{\tau}}{\sigma(h_{\sigma\tau})}=\frac{u_{\sigma}N_{\sigma}(g)u_{\tau}N_{\tau}(g)}{\sigma(u_{\sigma\tau})\sigma(N_{\sigma\tau}(g))}.
$$

Subfield relation: $h = ug^2$ for some $u \in \mathcal{O}_L^{\times}$.

Problem: This is not necessarily a square! Solution: Use quadratic characters to find $v\in \mathcal{O}_L^\times$ with square $vh.$

Fact

Can compute $N_{\sigma}(g) \mathcal{O}_{K_{\sigma}}$ quickly from $h\mathcal{O}_L$.

Apply algorithm recursively to find generator h_σ of $N_\sigma(g){\mathcal O}_{K_\sigma}.$ i.e. $h_{\sigma} = u_{\sigma} N_{\sigma}(g)$ for some unit u_{σ} .

Similarly h_{τ} , $h_{\sigma\tau}$. Compute

$$
h=\frac{h_{\sigma}h_{\tau}}{\sigma(h_{\sigma\tau})}=\frac{u_{\sigma}N_{\sigma}(g)u_{\tau}N_{\tau}(g)}{\sigma(u_{\sigma\tau})\sigma(N_{\sigma\tau}(g))}.
$$

Subfield relation: $h = ug^2$ for some $u \in \mathcal{O}_L^{\times}$.

Problem: This is not necessarily a square! Solution: Use quadratic characters to find $v\in \mathcal{O}_L^\times$ with square $vh.$

Last step is to shorten the generator $u'g = \sqrt{g}$ vh by solving the BDD problem in the log-unit lattice.

Algorithm 1: $\text{MQPIP}(L, \mathcal{I})$ Input: Real multiquadratic field L and a basis matrix for a principal ideal $\bm{\mathcal{I}}$ of $\mathcal{O}_{\bm{L}}$ **Result**: A short generator g for \mathcal{I} 1 if $[L: \mathbb{Q}] = 2$ then 2 | return $\mathrm{QPIP}(L,\mathcal{I})$ 3 $\sigma, \tau \leftarrow \text{Gal}(L/\mathbb{Q})$ 4 for $\ell \in \{\sigma, \tau, \sigma \tau\}$ do 5 $\,$ Set \mathcal{K}_ℓ so that $\mathsf{Gal}(L/\mathcal{K}_\ell)=\langle \ell \rangle$ 6 $\left[\begin{array}{c} \mathcal{I}_\ell \leftarrow (\mathcal{I} \cdot \sigma_\ell(\mathcal{I})) \cap \mathcal{K}_\ell = \mathcal{N}_\ell(\mathcal{I}) \end{array} \right]$ 7 | $g_\ell, U_\ell \leftarrow \text{MQPIP}(K_\ell, \mathcal{I}_\ell)$ 8 $\mathcal{O}_L^{\times}, X \leftarrow$ UnitsGivenSubgroup (U_ℓ) $\mathfrak{g} \not \mathfrak{h} \leftarrow g_{\sigma} g_{\tau} \sigma(g_{\sigma \tau}^{-1})$ 10 $g' \leftarrow \text{IdealSqrt}(h, \mathcal{O}_L^{\times}, X)$ 11 $g \leftarrow \text{ShortenGen}(g', \mathcal{O}_L^{\times})$ 12 return $g, \mathcal{O}_L^{\times}$

Algorithm 1: $MQPIP(L, I)$ Input: Real multiquadratic field L and a basis matrix for a principal ideal $\mathcal I$ of $\mathcal O$ **Result**: A short generator g for I 1 if $[L: \mathbb{Q}] = 2$ then 2 | return $QPIP(L, \mathcal{I})$ \rightarrow $O(NB)$ 3 $\sigma, \tau \leftarrow$ Gal(L/\mathbb{Q}) 4 for $\ell \in \{\sigma, \tau, \sigma\tau\}$ do 5 Set K_{ℓ} so that $Gal(L/K_{\ell}) = \langle \ell \rangle$ 6 $\left\vert \quad \mathcal{I}_{\ell} \leftarrow \left(\mathcal{I} \cdot \sigma_{\ell}(\mathcal{I}) \right) \cap \mathcal{K}_{\ell} = \mathcal{N}_{\ell}(\mathcal{I}) \right.$ 7 $g_\ell, U_\ell \leftarrow \text{MQPIP}(K_\ell, \mathcal{I}_\ell)$ 8 $\mathcal{O}_L^{\times}, X \leftarrow$ UnitsGivenSubgroup $(U_\ell) \longrightarrow O(N)$ $(\exp. O(N^{2 + \log_2 3} B))$ $\mathfrak{g}\nolimits \stackrel{\sim}{\leftarrow}\mathsf{g}_\sigma \mathsf{g}_\tau \sigma (\mathsf{g}_{\sigma\tau}^{-1})$ στ) . O(N $D \circ O(N^2B)$ 10 $g' \leftarrow \text{IdealSqrt}(h, \mathcal{O}_{L}^{\times})$ $, X$ \triangleright $O(N^3 + N^2B)$ 11 $g \leftarrow \text{ShortenGen}(g', \mathcal{O}_L^{\times})$) $\qquad \qquad \triangleright \hspace{.1cm} O(N^2B)$ 12 return $g, \mathcal{O}_L^{\times}$

Part IV: Results

Attack Speed Results (in seconds)

Table : Observed time to compute (once) the unit group of $\mathbb{Q}(\sqrt{d_1},\ldots,\sqrt{d_n});$ and to find a generator for the public key in the cryptosystem.

Attack Success Results

Table : Observed attack success probabilities for various multiquadratic fields.

Figure : A multitude of quads.

Questions?